Further Insight into the Depth-Dependent Microstructural Response of Cartilage to Compression Using a Channel Indentation Technique

نویسندگان

  • Ashvin Thambyah
  • Neil D. Broom
چکیده

Stress relaxation and structural analysis were used to investigate the zonally differentiated microstructural response to compression of the integrated cartilage-on-bone tissue system. Fifteen cartilage-on-bone samples were divided into three equal groups and their stress relaxation responses obtained at three different levels of axial compressive strain defined as low (~20%), medium (~40%) and high (~60%). All tests were performed using a channel indenter which included a central relief space designed to capture the response of the matrix adjacent to the directly loaded regions. On completion of each stress relaxation test and while maintaining the imposed axial strain, the samples were formalin fixed, decalcified, and then sectioned for microstructural analysis. Chondron aspect ratios were used to determine the extent of relative strain at different zonal depths. The stress relaxation response of cartilage to all three defined levels of axial strain displayed an initial highly viscous response followed by a significant elastic response. Chondron aspect ratio measurements showed that at the lowest level of compression, axial deformation was confined to the superficial cartilage layer, while in the medium and high axial strain samples the deformation extended into the midzone. The cells in the deep zone remained undeformed for all compression levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Articular Cartilage Behavior with a Non-Linear Microstructural Model

We report here on a non-linear poroelastic model for the mechanical response of collagenous soft tissues such as articular cartilage. The tissue consists of a porous, fibril-reinforced, hyperelastic solid, saturated with an incompressible fluid, and Darcy's law governs solid-fluid interaction. The solid matrix is characterized by the isotropic hyperfoam strain energy function and its permeabili...

متن کامل

Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.

A time- and depth-dependent Poisson's ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such ...

متن کامل

Direct Visualisation of the Depth-Dependent Mechanical Properties of Full-Thickness Articular Cartilage.

OBJECTIVE The structural anisotropy of articular cartilage controls its deformation response. As proteoglycans and collagen vary with depth, simple uniaxial compression results in inhomogeneous deformation with distinct depth-dependent mechanical properties. Investigations into depth-dependent mechanical properties of articular cartilage have previously required tissue modification after specim...

متن کامل

A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation.

OBJECTIVE The composition of articular cartilage changes with progression of osteoarthritis. Since compositional changes are associated with changes in the mechanical properties of the tissue, they are relevant for understanding how mechanical loading induces progression. The objective of this study is to present a computational model of articular cartilage which enables to study the interactio...

متن کامل

Arthroscopic lens distortion correction applied to dynamic cartilage loading.

It is difficult to study the deformation of articular cartilage because it is an inhomogenous material with depth dependent constituents. In many experimental studies, cartilage is assumed to behave homogeneously and is subjected to only static or quasi-static loads. In this study, a thick walled, mechanically active culture device (TRIAX) was used to apply cyclic loading to cartilage explants ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013